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Chapter 6: Derivative-Based 
Optimization

Introduction (6.1)
Descent Methods (6.2)
The Method of Steepest Descent (6.3)
Newton’s Methods (NM) (6.4)
Step Size Determination (6.5)
Nonlinear Least-Squares Problems (6.8)

Jyh-Shing Roger Jang et al., Neuro-Fuzzy and Soft Computing: A Computational 
Approach to Learning and Machine Intelligence, First Edition, Prentice Hall, 1997

Introduction (6.1)
Goal: Solving minimization nonlinear problems    

through derivative information

We cover:
Gradient based optimization techniques
Steepest descent methods
Newton Methods
Conjugate gradient methods
Nonlinear least-squares problems

They are used in:
Optimization of nonlinear neuro-fuzzy models
Neural network learning
Regression analysis in nonlinear models
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Descent methods (6.2)
Goal: Determine a point                                  
such that 

f(θ1, θ2, …, θn) is minimum on

We are looking for a local & not necessarily a 

global minimum

Let f(θ1, θ2, …, θn) = E(θ1, θ2, …, θn), the 
search of this minimum is performed through a 
certain direction d starting from an initial value 
θ = θ0 (iterative scheme!)
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Descent Methods (6.2) (cont.)
θnext = θnow + η d

(η > 0 is a step size regulating the search in the direction d)
θk +1 = θk + ηkdk (k = 1, 2, …)

The series                        should converge to a local minimum

We first need to determine the next direction d & then compute the 
step size η

η kdk is called the k-th step, whereas η k is the k-th step size

We should have E(θnext) = E(θnow + η d) < E(θnow)

The principal differences between various descent algorithms lie
in the first procedure for determining successive directions
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Descent Methods (6.2) (cont.)

Once d is determined,      is computed as:

Gradient-based methods

Definition: The gradient of a differentiable function E: IRn IR at θ is 
the vector of first derivatives of E, denoted as g. That is:
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Descent Methods (6.2) (cont.)

Based on a given gradient, downhill 
directions adhere to the following condition 
for feasible descent directions:

Where ξ is the angle between g and d and ξ
(θnow) is the angle between gnow and d at 
point θnow
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Descent models (6.2) (cont.)
The previous equation is justified by Taylor series expansion:

E(θnow + ηd) = E(θnow) + ηgTd + 0(η2)
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Descent Methods (6.2) (cont.)

A class of gradient-based descent methods has 
the following form in which feasible descent 
directions can be found by gradient deflection

Gradient deflection consists of multiplying the 
gradient g by a positive definite matrix (pdm) G
d = - Gg ⇒ gTd = - gTGg < 0 (feasible descent 

direction)

The gradient-based method is described therefore 
by:

θnext = θnow - ηGg (η > 0, G pdm)      (*)

Descent Methods (6.2) (cont.)

Theoretically, we wish to determine a value θnext such as:

but this is difficult to solve!!

But practically, we stop the algorithm if:

The objective function value is sufficiently small
The length of the gradient vector g is smaller than a threshold
The computation time is exceeded

0)(E)(g nextnext =
θ∂
θ∂

=θ θ=θ
(Necessary condition
but not sufficient!)
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The method of Steepest Descent (6.3)

Despite its slow convergence, this method is the 
most frequently used nonlinear optimization 
technique due to its simplicity

If G = Id (identity matrix) then equation (*) 
expresses the steepest descent scheme:

θnext = θnow - ηg

If Cos ξ = -1 (meaning that d points to the 
same direction of vector – g ) then the objective 
function E can be decreased locally by the 
biggest amount at point θnow

The method of Steepest Descent (6.3) (cont.)

Therefore, the negative gradient direction (-g) points to 
the locally steepest downhill direction

This direction may not be a shortcut to reach the 
minimum point θ*

However, if the steepest descent uses the line 
minimization technique (min ∅(η)) then ∅’(η) = 0

⇒ gnext is orthogonal to the current gradient vector gnow
(see figure 6.2; pt X)
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The method of Steepest Descent (6.3) (cont.)

If the contours of the objective function 
E form hyperspheres (or circles in a 2 
dimensional space), the steepest descent 
methods leads to the minimum in a 
single step. Otherwise the method does 
not lead to the minimum point

Newton’s Methods (NM) (6.4)
Classical NM

Principle: The descent direction d is determined by 
using the second derivatives of the objective 
function E if available

If the starting position θnow is sufficient close to 
a local minimum, the objective function E can 
be approximated by a quadratic form:
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Newton’s Methods (NM) (6.4) (cont.)

Since the equation defines a quadratic 
function E(θ) in the θnow neighborhood ⇒ its 
minimum       can be determined by 
differenting & setting to 0. Which gives: 

0 = g + H(      - θnow)
Equivalent to:        = θnow – H-1g

It is a gradient-based method for η = 1 and G 
= H-1

θ̂

θ̂
θ̂

Newton’s Methods (NM) (6.4) (cont.)

Only when the minimum point      of the approximated 
quadratic function is chosen as the next point θnext, we 
have the so-called NM or the Newton-Raphson method

= θnow – H-1g

If H is positive definite and E(θ) is quadratic then the NM 
directly reaches a local minimum in the single Newton 
step (single – H-1g)

If E(θ) is not quadratic, then the minimum may nor be 
reached in a single step & NM should be iteratively 
repeated

θ̂

θ̂
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Step Size Determination (6.5)
Formula of a class of gradient-based 
descent methods:

θnext = θnow + ηd = θnow - ηGg

This formula entails effectively 
determining the step size η

∅’(η) = 0 with ∅(η) = E(θ now+ ηd) is 
often impossible to solve
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Step Size Determination (6.5) (cont.)

Initial Bracketing

We assume that the search area (or specified interval) 
contains a single relative minimum: E is unimodal over 
the closed interval

Determining the initial interval in which a relative 
minimum must lie is of critical importance 

A scheme, by function evaluation for finding three points 
to satisfy:
E(θk-1) > E(θk) < E(θk+1); θk-1 < θk < θk+1

A scheme, by taking the first derivative, for finding two 
points to satisfy:
E’(θk) < 0, E’(θk+1) > 0, θk < θk+1

Algorithm for scheme 1:
An initial bracketing for searching three points θ1, θ2 and θ3

1) Given a starting point θ0 and h ∈ IR, let θ1 be θ0 +h. 
Evaluate E(θ1)
if E(θ0) ≥ E(θ1), i 1
(i.e., go downhill) go to (2)
otherwise            h -h (i.e., set backward direction)

E (θ-1) E(θ1)
θ1 θ0 + h
i 0
go to (3)

2) Set the next point by; h 2h, θi+1 θi + h
3) Evaluate E(θi+1)

if E(θi) ≥ E(θi+1); i i + 1
(i.e., still go downhill)   go to (2)
Otherwise,            Arrange θi-1, θi and θi+1 in the decreasing order

Then, we obtain the three points: (θ1,θ2,θ3)
Stop.
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Line searches

The process of determining η* that minimizes a one-
dimensional function ∅(η) is achieved by searching on 
the line for the minimum

Line search algorithms usually include two components: 
sectioning (or bracketing), and polynomial interpolation

Newton’s method
When ∅(ηk), ∅’(ηk), and ∅’’(ηk) are available, the classical 
Newton method (defined by                          ) can be

applied to solving the equation ∅’(ηk) = 0: 

1
gnow Hˆ −−θ=θ
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Step Size Determination (6.5) (cont.)

Secant method
If we use both ηk and ηk-1 to approximate the 
second derivative in equation (*), and if  the first 
derivatives alone are available then we have an 
estimated ηk+1 defined as:

this method is called the secant method. 

Both the Newton’s and the secant method are 
illustrated in the following figure.
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Step Size Determination (6.5) (cont.)
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Newton’s method and secant method 
to determinethe step size

Sectioning methods

It starts with an interval [a1, b1] in which the

minimum      must lie, and then reduces the length 
of the interval at each iteration by evaluating the 
value of ∅ at a certain number of points

The two endpoints a1 and b1 can be found by the 
initial bracketing described previously

The bisection method is one of the simplest 
sectioning method for solving ∅’(η*) = 0, if first 
derivatives are available!

*
η

Step Size Determination (6.5) (cont.)
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Let ∅’(η) = ϕ(η) then the algorithm is:

Algorithm [bisection method]
(1) Given ε ∈ IR+ and an initial interval with 2 endpoints 

a1 and a2 such that: a1 < a2 and ϕ(a1)ϕ(a2) < 0 then 
set:

ηleft a1

ηright a2

(2) Compute the midpoint ηmid; ηmid (ηright + ηleft) / 2
if ϕ(ηright) ϕ(ηmid) < 0, ηleft ηmid

Otherwise  ηright ηmid

(3) Check if |ηleft - ηright| < ε. If it is true then terminate 
the algorithm, otherwise go to (2) 

Golden section search method

This method does not require ∅ to be 
differentiable. Given an initial interval [a1,b1] 
that contains    , the next trial points (sk,tk) 
within the interval are determined by using the 
golden section ratio τ:
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Step Size Determination (6.5) (cont.)
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This procedure guarantees the following:
ak < sk < tk < bk
The algorithm generates a sequence of two 
endpoints ak and bk, according to:

If ∅(sk) > ∅(tk), ak+1 = sk, bk+1 = bk
Otherwise           ak+1 = ak, bk+1 = tk

The minimum point     is bracketed to an 
interval just 2/3 times the length of the 
preceding interval 

*
η

Step Size Determination (6.5) (cont.)

Golden section search to determine the step length
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Step Size Determination (6.5) (cont.)

Line searches (cont.)

Polynomial interpolation

This method is based on curve-fitting procedures
A quadratic interpolation is the method that is very 
often used in practice
It constructs a smooth quadratic curve q that 
passes through three points (η1, ∅1), (η2, ∅2) and 
(η3, ∅3):

where ∅i = ∅(ηi), i = 1, 2, 3
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Step Size Determination (6.5) (cont.)

Polynomial interpolation (cont.)

Condition for obtaining a unique minimum point is:
q’(η) = 0, therefore the next point ηnext is:
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Quadratic Interpolation

Step Size Determination (6.5) (cont.)

Termination rules

Line search methods do not provide the 
exact minimum point of the function ∅

We need a termination rule that accelerate 
the entire minimization process without 
affecting too much precision 
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Step Size Determination (6.5) (cont.)

Termination rules (cont.)

The Goldstein Test

This method is based on two definitions:

A value of η is not too large if with a given µ
(0 < µ < ½), 

∅(η) ≤ ∅(0) + µ ∅’(0)η

A value of η is considered to be not too small if:
∅(η) > ∅(0) + (1 - µ) ∅’(η)

Step Size Determination (6.5) (cont.)

Goldstein test (cont.)

From the two precedent inequalities, we obtain:

(1 - µ) ∅’(0)η ≤ ∅(η) - ∅(0) = E(θnext) – E(θnow) 
≤ µ ∅’(0)η

which can be written as:

where ∅’(0) = gTd < 0 (Taylor series)

( ) ( ) 11
gd

EE0 nownext <µ−≤
η

θ−θ
≤µ< (Condition for η!)



CSE 513 Soft Computing Dr. Djamel Bouchaffra

Ch. 6 [sections 6.1-6.5, 6.8]: Derivative-
based optimization 18

Goldstein Test

Nonlinear Least-Squares Problems  (6.8)
Goal: Optimize a model by minimizing a 
squared error measure between desired 
outputs & the model’s output

y = f(x, θ)

Given a set of m training data pairs (xp; tp), 
(p = 1, …, m), we can write:
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Nonlinear Least-Squares Problems (6.8) (cont.)

The gradient is expressed as:

where J is the Jacobian matrix of r. 

Since rp(θ) = tp – f(xp, θ), this implies that 
the pth row of J is: 

r.J2
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Nonlinear Least-Squares Problems (6.8) (cont.)

Gauss-Newton Method

Known also as the linearization method

Use Taylor series expansion to obtain a linear 
model that approximates the original 
nonlinear model

Use linear least-squares optimization of 
chapter 5 to obtain the model parameters
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Nonlinear Least-Squares Problems (6.8) (cont.)

Gauss-Newton Method (cont.)

The parameters θT = (θ1, θ2, …, θn,…) will be 
computed iterativelly

Taylor expansion of y = f(x, θ) around θ = θnow
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Nonlinear Least-Squares Problems (6.8) (cont.)

Gauss-Newton Method (cont.)

y – f(x, θnow) is linear with respect to θi - θi,now
since the partial derivatives are constant

where S = θ - θnow
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Nonlinear Least-Squares Problems (6.8) (cont.)

Gauss-Newton Method (cont.)

The next point θnext is obtained by:

Therefore, the following Gauss-Newton formula is 
expressed as:

θnext = θnow – (JTJ)-1 JTr = θnow – ½ (JTJ)-1g
(since g = 2JTr)

{ } 0)(JrJ)(E
nownext

T
next =θ−θ+=

θ∂
θ∂

θ=θ


	Chapter 6: Derivative-Based            Optimization
	Introduction (6.1)
	Descent methods (6.2)
	Descent Methods (6.2) (cont.)
	Descent Methods (6.2) (cont.)
	Descent Methods (6.2) (cont.)
	Descent models (6.2) (cont.)
	Descent Methods (6.2) (cont.)
	Descent Methods (6.2) (cont.)
	The method of Steepest Descent (6.3)
	The method of Steepest Descent (6.3) (cont.)
	The method of Steepest Descent (6.3) (cont.)
	Newton’s Methods (NM) (6.4)
	Newton’s Methods (NM) (6.4) (cont.)
	Newton’s Methods (NM) (6.4) (cont.)
	Step Size Determination (6.5)
	Step Size Determination (6.5) (cont.)
	Step Size Determination (6.5) (cont.)
	Step Size Determination (6.5) (cont.)
	Step Size Determination (6.5) (cont.)
	Step Size Determination (6.5) (cont.)
	Step Size Determination (6.5) (cont.)
	Step Size Determination (6.5) (cont.)
	Step Size Determination (6.5) (cont.)
	Step Size Determination (6.5) (cont.)
	Step Size Determination (6.5) (cont.)
	Step Size Determination (6.5) (cont.)
	Nonlinear Least-Squares Problems  (6.8)
	Nonlinear Least-Squares Problems (6.8) (cont.)
	Nonlinear Least-Squares Problems (6.8) (cont.)
	Nonlinear Least-Squares Problems (6.8) (cont.)
	Nonlinear Least-Squares Problems (6.8) (cont.)
	Nonlinear Least-Squares Problems (6.8) (cont.)

