
CSE 513 Soft Computing Dr. Djamel Bouchaffra

Ch. 6 [sections 6.1-6.5, 6.8]: Derivative-
based optimization 1

Chapter 6: Derivative-Based
Optimization

Introduction (6.1)
Descent Methods (6.2)
The Method of Steepest Descent (6.3)
Newton’s Methods (NM) (6.4)
Step Size Determination (6.5)
Nonlinear Least-Squares Problems (6.8)

Jyh-Shing Roger Jang et al., Neuro-Fuzzy and Soft Computing: A Computational
Approach to Learning and Machine Intelligence, First Edition, Prentice Hall, 1997

Introduction (6.1)
Goal: Solving minimization nonlinear problems

through derivative information

We cover:
Gradient based optimization techniques
Steepest descent methods
Newton Methods
Conjugate gradient methods
Nonlinear least-squares problems

They are used in:
Optimization of nonlinear neuro-fuzzy models
Neural network learning
Regression analysis in nonlinear models

CSE 513 Soft Computing Dr. Djamel Bouchaffra

Ch. 6 [sections 6.1-6.5, 6.8]: Derivative-
based optimization 2

Descent methods (6.2)
Goal: Determine a point
such that

f(θ1, θ2, …, θn) is minimum on

We are looking for a local & not necessarily a

global minimum

Let f(θ1, θ2, …, θn) = E(θ1, θ2, …, θn), the
search of this minimum is performed through a
certain direction d starting from an initial value
θ = θ0 (iterative scheme!)

T

n
*

2
*

1
**

,...,,

θθθ=θ=θ

.
*
θ=θ

*
θ

Descent Methods (6.2) (cont.)
θnext = θnow + η d

(η > 0 is a step size regulating the search in the direction d)
θk +1 = θk + ηkdk (k = 1, 2, …)

The series should converge to a local minimum

We first need to determine the next direction d & then compute the
step size η

η kdk is called the k-th step, whereas η k is the k-th step size

We should have E(θnext) = E(θnow + η d) < E(θnow)

The principal differences between various descent algorithms lie
in the first procedure for determining successive directions

*
θ{ } ,...,2,1kk =θ

CSE 513 Soft Computing Dr. Djamel Bouchaffra

Ch. 6 [sections 6.1-6.5, 6.8]: Derivative-
based optimization 3

Descent Methods (6.2) (cont.)

Once d is determined, is computed as:

Gradient-based methods

Definition: The gradient of a differentiable function E: IRn IR at θ is
the vector of first derivatives of E, denoted as g. That is:

*
η

)dE()(:where

)(minarg

now

0

*

η+θ=η∅

η∅=η
>η

T

n21

def)(E,...,)(E,)(E)(E)(g

θ∂
θ∂

θ∂
θ∂

θ∂
θ∂

=θ∇=θ

Descent Methods (6.2) (cont.)

Based on a given gradient, downhill
directions adhere to the following condition
for feasible descent directions:

Where ξ is the angle between g and d and ξ
(θnow) is the angle between gnow and d at
point θnow

0))(cos(d gdg
d

)d(dE)0(' now
TT

0
now <θξ==
η

η+θ
=∅ =η

CSE 513 Soft Computing Dr. Djamel Bouchaffra

Ch. 6 [sections 6.1-6.5, 6.8]: Derivative-
based optimization 4

Descent models (6.2) (cont.)
The previous equation is justified by Taylor series expansion:

E(θnow + ηd) = E(θnow) + ηgTd + 0(η2)

CSE 513 Soft Computing Dr. Djamel Bouchaffra

Ch. 6 [sections 6.1-6.5, 6.8]: Derivative-
based optimization 5

Descent Methods (6.2) (cont.)

A class of gradient-based descent methods has
the following form in which feasible descent
directions can be found by gradient deflection

Gradient deflection consists of multiplying the
gradient g by a positive definite matrix (pdm) G
d = - Gg ⇒ gTd = - gTGg < 0 (feasible descent

direction)

The gradient-based method is described therefore
by:

θnext = θnow - ηGg (η > 0, G pdm) (*)

Descent Methods (6.2) (cont.)

Theoretically, we wish to determine a value θnext such as:

but this is difficult to solve!!

But practically, we stop the algorithm if:

The objective function value is sufficiently small
The length of the gradient vector g is smaller than a threshold
The computation time is exceeded

0)(E)(g nextnext =
θ∂
θ∂

=θ θ=θ
(Necessary condition
but not sufficient!)

CSE 513 Soft Computing Dr. Djamel Bouchaffra

Ch. 6 [sections 6.1-6.5, 6.8]: Derivative-
based optimization 6

The method of Steepest Descent (6.3)

Despite its slow convergence, this method is the
most frequently used nonlinear optimization
technique due to its simplicity

If G = Id (identity matrix) then equation (*)
expresses the steepest descent scheme:

θnext = θnow - ηg

If Cos ξ = -1 (meaning that d points to the
same direction of vector – g) then the objective
function E can be decreased locally by the
biggest amount at point θnow

The method of Steepest Descent (6.3) (cont.)

Therefore, the negative gradient direction (-g) points to
the locally steepest downhill direction

This direction may not be a shortcut to reach the
minimum point θ*

However, if the steepest descent uses the line
minimization technique (min ∅(η)) then ∅’(η) = 0

⇒ gnext is orthogonal to the current gradient vector gnow
(see figure 6.2; pt X)

() ()

0gg

ggE
d

gdE)('

now
T
next

nownownow
Tnownow

=−=

η−θ∇=
η
η−θ

=η∅ (Necessary
Condition for ∅)

CSE 513 Soft Computing Dr. Djamel Bouchaffra

Ch. 6 [sections 6.1-6.5, 6.8]: Derivative-
based optimization 7

The method of Steepest Descent (6.3) (cont.)

If the contours of the objective function
E form hyperspheres (or circles in a 2
dimensional space), the steepest descent
methods leads to the minimum in a
single step. Otherwise the method does
not lead to the minimum point

Newton’s Methods (NM) (6.4)
Classical NM

Principle: The descent direction d is determined by
using the second derivatives of the objective
function E if available

If the starting position θnow is sufficient close to
a local minimum, the objective function E can
be approximated by a quadratic form:

θ∂
∂

=θ∇=

θ−θθ−θ+θ−θ+θ≅θ

2

2
2

now
T

nownow
T

now

E)(EH where

)(H)(
2
1)(g)(E)(E

CSE 513 Soft Computing Dr. Djamel Bouchaffra

Ch. 6 [sections 6.1-6.5, 6.8]: Derivative-
based optimization 8

Newton’s Methods (NM) (6.4) (cont.)

Since the equation defines a quadratic
function E(θ) in the θnow neighborhood ⇒ its
minimum can be determined by
differenting & setting to 0. Which gives:

0 = g + H(- θnow)
Equivalent to: = θnow – H-1g

It is a gradient-based method for η = 1 and G
= H-1

θ̂

θ̂
θ̂

Newton’s Methods (NM) (6.4) (cont.)

Only when the minimum point of the approximated
quadratic function is chosen as the next point θnext, we
have the so-called NM or the Newton-Raphson method

= θnow – H-1g

If H is positive definite and E(θ) is quadratic then the NM
directly reaches a local minimum in the single Newton
step (single – H-1g)

If E(θ) is not quadratic, then the minimum may nor be
reached in a single step & NM should be iteratively
repeated

θ̂

θ̂

CSE 513 Soft Computing Dr. Djamel Bouchaffra

Ch. 6 [sections 6.1-6.5, 6.8]: Derivative-
based optimization 9

Step Size Determination (6.5)
Formula of a class of gradient-based
descent methods:

θnext = θnow + ηd = θnow - ηGg

This formula entails effectively
determining the step size η

∅’(η) = 0 with ∅(η) = E(θ now+ ηd) is
often impossible to solve

CSE 513 Soft Computing Dr. Djamel Bouchaffra

Ch. 6 [sections 6.1-6.5, 6.8]: Derivative-
based optimization 10

Step Size Determination (6.5) (cont.)

Initial Bracketing

We assume that the search area (or specified interval)
contains a single relative minimum: E is unimodal over
the closed interval

Determining the initial interval in which a relative
minimum must lie is of critical importance

A scheme, by function evaluation for finding three points
to satisfy:
E(θk-1) > E(θk) < E(θk+1); θk-1 < θk < θk+1

A scheme, by taking the first derivative, for finding two
points to satisfy:
E’(θk) < 0, E’(θk+1) > 0, θk < θk+1

Algorithm for scheme 1:
An initial bracketing for searching three points θ1, θ2 and θ3

1) Given a starting point θ0 and h ∈ IR, let θ1 be θ0 +h.
Evaluate E(θ1)
if E(θ0) ≥ E(θ1), i 1
(i.e., go downhill) go to (2)
otherwise h -h (i.e., set backward direction)

E (θ-1) E(θ1)
θ1 θ0 + h
i 0
go to (3)

2) Set the next point by; h 2h, θi+1 θi + h
3) Evaluate E(θi+1)

if E(θi) ≥ E(θi+1); i i + 1
(i.e., still go downhill) go to (2)
Otherwise, Arrange θi-1, θi and θi+1 in the decreasing order

Then, we obtain the three points: (θ1,θ2,θ3)
Stop.

CSE 513 Soft Computing Dr. Djamel Bouchaffra

Ch. 6 [sections 6.1-6.5, 6.8]: Derivative-
based optimization 11

Line searches

The process of determining η* that minimizes a one-
dimensional function ∅(η) is achieved by searching on
the line for the minimum

Line search algorithms usually include two components:
sectioning (or bracketing), and polynomial interpolation

Newton’s method
When ∅(ηk), ∅’(ηk), and ∅’’(ηk) are available, the classical
Newton method (defined by) can be

applied to solving the equation ∅’(ηk) = 0:

1
gnow Hˆ −−θ=θ

(*)
)(''
)('

k

k
k1k η∅

η∅
−η=η +

Step Size Determination (6.5) (cont.)

Secant method
If we use both ηk and ηk-1 to approximate the
second derivative in equation (*), and if the first
derivatives alone are available then we have an
estimated ηk+1 defined as:

this method is called the secant method.

Both the Newton’s and the secant method are
illustrated in the following figure.

1kk

1kk

k
k1k)(')('

)('

−

−
+

η−η
η∅−η∅

η∅
−η=η

Step Size Determination (6.5) (cont.)

CSE 513 Soft Computing Dr. Djamel Bouchaffra

Ch. 6 [sections 6.1-6.5, 6.8]: Derivative-
based optimization 12

Newton’s method and secant method
to determinethe step size

Sectioning methods

It starts with an interval [a1, b1] in which the

minimum must lie, and then reduces the length
of the interval at each iteration by evaluating the
value of ∅ at a certain number of points

The two endpoints a1 and b1 can be found by the
initial bracketing described previously

The bisection method is one of the simplest
sectioning method for solving ∅’(η*) = 0, if first
derivatives are available!

*
η

Step Size Determination (6.5) (cont.)

CSE 513 Soft Computing Dr. Djamel Bouchaffra

Ch. 6 [sections 6.1-6.5, 6.8]: Derivative-
based optimization 13

Let ∅’(η) = ϕ(η) then the algorithm is:

Algorithm [bisection method]
(1) Given ε ∈ IR+ and an initial interval with 2 endpoints

a1 and a2 such that: a1 < a2 and ϕ(a1)ϕ(a2) < 0 then
set:

ηleft a1

ηright a2

(2) Compute the midpoint ηmid; ηmid (ηright + ηleft) / 2
if ϕ(ηright) ϕ(ηmid) < 0, ηleft ηmid

Otherwise ηright ηmid

(3) Check if |ηleft - ηright| < ε. If it is true then terminate
the algorithm, otherwise go to (2)

Golden section search method

This method does not require ∅ to be
differentiable. Given an initial interval [a1,b1]
that contains , the next trial points (sk,tk)
within the interval are determined by using the
golden section ratio τ:

*
η

618.1
2

51 where

)ab(1at

)ab(1b)ab(1bs

kkkk

kkkkkkk

≅
+

=τ

−
τ

+=

−
τ
−τ

+=−
τ

−=

Step Size Determination (6.5) (cont.)

CSE 513 Soft Computing Dr. Djamel Bouchaffra

Ch. 6 [sections 6.1-6.5, 6.8]: Derivative-
based optimization 14

This procedure guarantees the following:
ak < sk < tk < bk
The algorithm generates a sequence of two
endpoints ak and bk, according to:

If ∅(sk) > ∅(tk), ak+1 = sk, bk+1 = bk
Otherwise ak+1 = ak, bk+1 = tk

The minimum point is bracketed to an
interval just 2/3 times the length of the
preceding interval

*
η

Step Size Determination (6.5) (cont.)

Golden section search to determine the step length

CSE 513 Soft Computing Dr. Djamel Bouchaffra

Ch. 6 [sections 6.1-6.5, 6.8]: Derivative-
based optimization 15

Step Size Determination (6.5) (cont.)

Line searches (cont.)

Polynomial interpolation

This method is based on curve-fitting procedures
A quadratic interpolation is the method that is very
often used in practice
It constructs a smooth quadratic curve q that
passes through three points (η1, ∅1), (η2, ∅2) and
(η3, ∅3):

where ∅i = ∅(ηi), i = 1, 2, 3

∑ ∏

∏

=
≠

≠

η−η

η−η

∅=η
3

1i
ij

ji

ij
j

i)(

)(
)(q

Step Size Determination (6.5) (cont.)

Polynomial interpolation (cont.)

Condition for obtaining a unique minimum point is:
q’(η) = 0, therefore the next point ηnext is:

321213132

3
2
2

2
12

2
1

2
31

2
3

2
2

next)()()(
)()()(*

2
1

∅η−η+∅η−η+∅η−η
∅η−η+∅η−η+∅η−η

=η

CSE 513 Soft Computing Dr. Djamel Bouchaffra

Ch. 6 [sections 6.1-6.5, 6.8]: Derivative-
based optimization 16

Quadratic Interpolation

Step Size Determination (6.5) (cont.)

Termination rules

Line search methods do not provide the
exact minimum point of the function ∅

We need a termination rule that accelerate
the entire minimization process without
affecting too much precision

CSE 513 Soft Computing Dr. Djamel Bouchaffra

Ch. 6 [sections 6.1-6.5, 6.8]: Derivative-
based optimization 17

Step Size Determination (6.5) (cont.)

Termination rules (cont.)

The Goldstein Test

This method is based on two definitions:

A value of η is not too large if with a given µ
(0 < µ < ½),

∅(η) ≤ ∅(0) + µ ∅’(0)η

A value of η is considered to be not too small if:
∅(η) > ∅(0) + (1 - µ) ∅’(η)

Step Size Determination (6.5) (cont.)

Goldstein test (cont.)

From the two precedent inequalities, we obtain:

(1 - µ) ∅’(0)η ≤ ∅(η) - ∅(0) = E(θnext) – E(θnow)
≤ µ ∅’(0)η

which can be written as:

where ∅’(0) = gTd < 0 (Taylor series)

() () 11
gd

EE0 nownext <µ−≤
η

θ−θ
≤µ< (Condition for η!)

CSE 513 Soft Computing Dr. Djamel Bouchaffra

Ch. 6 [sections 6.1-6.5, 6.8]: Derivative-
based optimization 18

Goldstein Test

Nonlinear Least-Squares Problems (6.8)
Goal: Optimize a model by minimizing a
squared error measure between desired
outputs & the model’s output

y = f(x, θ)

Given a set of m training data pairs (xp; tp),
(p = 1, …, m), we can write:

∑

∑∑

=

==

θθ=θ=

θ−=−=θ

m

1p

T2
p

m

1p

2
pp

m

1p

2
pp

)(r).(r)(r

)),x(ft()yt()(E

CSE 513 Soft Computing Dr. Djamel Bouchaffra

Ch. 6 [sections 6.1-6.5, 6.8]: Derivative-
based optimization 19

Nonlinear Least-Squares Problems (6.8) (cont.)

The gradient is expressed as:

where J is the Jacobian matrix of r.

Since rp(θ) = tp – f(xp, θ), this implies that
the pth row of J is:

r.J2
)(r

)(r2)(E)0(gg T
m

1p

p
p =

θ∂

θ∂
θ=

θ∂
θ∂

== ∑
=

),x(f p
T θ∇− θ

=θθ→θ ϕ

ϕ
rJ)sinr,cosr(),r(

Nonlinear Least-Squares Problems (6.8) (cont.)

Gauss-Newton Method

Known also as the linearization method

Use Taylor series expansion to obtain a linear
model that approximates the original
nonlinear model

Use linear least-squares optimization of
chapter 5 to obtain the model parameters

CSE 513 Soft Computing Dr. Djamel Bouchaffra

Ch. 6 [sections 6.1-6.5, 6.8]: Derivative-
based optimization 20

Nonlinear Least-Squares Problems (6.8) (cont.)

Gauss-Newton Method (cont.)

The parameters θT = (θ1, θ2, …, θn,…) will be
computed iterativelly

Taylor expansion of y = f(x, θ) around θ = θnow

()∑
=

θ=θ θ−θ

θ∂
θ∂

+θ=
n

1i
now,iinow

i
now

),x(f),x(fy

Nonlinear Least-Squares Problems (6.8) (cont.)

Gauss-Newton Method (cont.)

y – f(x, θnow) is linear with respect to θi - θi,now
since the partial derivatives are constant

where S = θ - θnow

() ()()

() 2T2
now

T

2

now
now

now

SJrJr

,xf,xft)(E

+=θ−θ+=

θ−θ
θ∂
θ∂

−θ−=θ

CSE 513 Soft Computing Dr. Djamel Bouchaffra

Ch. 6 [sections 6.1-6.5, 6.8]: Derivative-
based optimization 21

Nonlinear Least-Squares Problems (6.8) (cont.)

Gauss-Newton Method (cont.)

The next point θnext is obtained by:

Therefore, the following Gauss-Newton formula is
expressed as:

θnext = θnow – (JTJ)-1 JTr = θnow – ½ (JTJ)-1g
(since g = 2JTr)

{ } 0)(JrJ)(E
nownext

T
next =θ−θ+=

θ∂
θ∂

θ=θ

	Chapter 6: Derivative-Based Optimization
	Introduction (6.1)
	Descent methods (6.2)
	Descent Methods (6.2) (cont.)
	Descent Methods (6.2) (cont.)
	Descent Methods (6.2) (cont.)
	Descent models (6.2) (cont.)
	Descent Methods (6.2) (cont.)
	Descent Methods (6.2) (cont.)
	The method of Steepest Descent (6.3)
	The method of Steepest Descent (6.3) (cont.)
	The method of Steepest Descent (6.3) (cont.)
	Newton’s Methods (NM) (6.4)
	Newton’s Methods (NM) (6.4) (cont.)
	Newton’s Methods (NM) (6.4) (cont.)
	Step Size Determination (6.5)
	Step Size Determination (6.5) (cont.)
	Step Size Determination (6.5) (cont.)
	Step Size Determination (6.5) (cont.)
	Step Size Determination (6.5) (cont.)
	Step Size Determination (6.5) (cont.)
	Step Size Determination (6.5) (cont.)
	Step Size Determination (6.5) (cont.)
	Step Size Determination (6.5) (cont.)
	Step Size Determination (6.5) (cont.)
	Step Size Determination (6.5) (cont.)
	Step Size Determination (6.5) (cont.)
	Nonlinear Least-Squares Problems (6.8)
	Nonlinear Least-Squares Problems (6.8) (cont.)
	Nonlinear Least-Squares Problems (6.8) (cont.)
	Nonlinear Least-Squares Problems (6.8) (cont.)
	Nonlinear Least-Squares Problems (6.8) (cont.)
	Nonlinear Least-Squares Problems (6.8) (cont.)

